[Нетология] Математика для анализа данных [Алексей Кузьмин, Денис Волк]

150

Чтобы увидеть в больших объёмах данных закономерности, аналитик опирается на линейную алгебру, математический анализ и теорию вероятности. Если специалист не разбирается в этих направлениях — гипотезы и выводы будут неточными. Это как запустить ракету в космос, не зная траекторию полёта.
Мы создали вводный курс в математику, чтобы вы начали исследовать данные с важным бэкграундом для Data Science и выбирали алгоритмы, которые будут решать поставленную задачу.
Без математики и статистики невозможно использовать алгоритмы машинного обучения, а значит — правильно управлять данными.
Кому подойдёт курс
1. Специалистам по Data Science
Начнёте глубже разбираться в алгоритмах машинного обучения. Поймёте, какие принципы лежат в основе разных алгоритмов, чтобы выбирать правильные инструменты.
2.Аналитикам данных
Познакомитесь с основными математическими концепциями и заложите теоретический фундамент, чтобы лучше разбираться в статистике и правильно интерпретировать данные.

После обучения, вы сможете:

  • Проверять векторы на линейную зависимость.
  • Решать системы линейных уравнений в матричной форме.
  • Вычислять собственные векторы и числа для матрицы.
  • Производить матричные разложения.
  • Вычислять производную функции нескольких аргументов.
  • Использовать различные методы оптимизации для поиска локального минимума функции.
  • Вычислять математическое ожидание и дисперсию дискретной случайной величины.
  • Использовать формулу Байеса для вычисления апостериорной вероятности.
  • Использовать закон больших чисел для оценки математического ожидания.