[proglib] Онлайн-курс по математике в Data Science 2023 [Леонид Крицков, Татьяна Захарова]
500₽
Новичкам в IT
Курс поможет освоить востребованную профессию Data Scientist, прокачать мышление для дальнейшего изучения анализа данных и computer science. Для его освоения достаточно школьных знаний математики.
Соискателям
Курс охватывает программу поступления в школу анализа данных Яндекса и те темы, что спрашивают на собеседования на позицию по анализу данных. Вы сможете получить обратную связь от преподавателей МГУ с многолетним опытом обучения студентов.
Чему вы научитесь на курсе
Поймете математические термины
Усвоите основную терминологию, сможете читать сложные статьи по Data Science и получать новые знания без постоянных обращений к поисковику.
Разбетесь в математических основах машинного обучения
Изучите математические основы Machine Learning и узнаете роль чисел, формул и функций в разработке алгоритмов машинного обучения.
Расширите свое сознание
Математика прокачивает мозг и развивает абстрактное мышление. В курсе много задач разного уровня сложности, что позволит вам набить руку и быть готовым к любым вопросам «на засыпку» на собеседовании.
Программа курса
Базовая математика для Data Science
- 01. Начала теории множеств
- 02. Геометрическая прогрессия. Векторная алгебра
- 03. Теория вероятностей. Рациональные уравнения
- 04. Рациональные уравнения. Алгебраические уравнения
- 05. Иррациональные уравнения. Графический способ решения систем
- 06. Неравенства
- 07. Неравенства продолжение
- 08. Функции график и свойства
- 09. Графики функций и их преобразования
- 10. Производная, исследование функций
- 11. Исследование функций. Интреграл
- 12. Контрольная работа
Математика для Data Science 2.0
Модуль 1. — Математический анализ
- О курсе
- Введение в модуль
- Теория множеств
- Числовые последовательности
- Пределы числовых функций. Асимптотическое сравнение функций
- Вебинар по решению задач домашней работы
- Непрерывность функции
- Дифференциальное исчисление
- Дифференцируемость функций многих переменных. Поиск экстремумов
- Применения формулы Тейлора
- Определенный интеграл
- Несобственный интеграл
- Интеграл Лебега
- Числовые и функциональные ряды
- Функции многих переменных
- Нахождение наибольшего и наименьшего значений функций на отрезке
Модуль 2. Комбинаторика
- Основные формулы комбинаторики
- Принцип Дирихле
- Перестановки, размещения и сочетания с повторениями
- Консультация по комбинаторике и теории вероятностей
Модуль 3. Теория вероятностей
- Основные понятия, классическая модель вероятности
- Непрерывные случайные величины
- Численные характеристики случайных величин
- Основные законы распределения случайных величин
- Моделирование случайных величин с заданным распределением
- Основные теоремы теории вероятностей
- Основные понятия матстатистики. Точечные оценки и их свойства
- Методы построения оценок неизвестных параметров
- Проверка статистических гипотез
Модуль 4. Алгебра
- Матрицы и операции над ними
- Определитель квадратной матрицы
- Обратная матрица
- Однородные и неоднородные системы уравнений
- Линейная зависимость и ранг
- Комплексные числа
- Линейные отображения
- Собственные векторы линейного отображения
- Скалярное произведение в линейном пространстве
- Отображения в евклидовом пространстве
- Билинейные и квадратичные формы
Модуль 5. Онлайн-сессии
- Word2vec
- Градиентный спуск
- Backpropagation
- Случайный лес
- Классификация наблюдений логистическая и пробит регрессии
- Метод ближайших соседей (KNN)
- Классификация наблюдений байесовский классификатор
Преподаватели курса
Леонид Крицков
Кандидат физико-математических наук, доцент факультета ВМК МГУ. Автор задачника «Алгебра и аналитическая геометрия: теоремы и задачи»,используемого в преподавании на факультете ВМК МГУ. Имеет опыт преподавания линейной алгебры студентам более 25 лет. Является автором более 80 научных публикаций.
Татьяна Захарова
Кандидат физико-математических наук, доцент факультета ВМК МГУ. Имеет опыт преподавания теории вероятностей и математической статистики студентам более 28 лет. Является автором более 70 научных публикаций, в том числе связанных с обработкой больших объемов данных.